
Improving National Blend of Models Probabilistic Precipitation Forecasts Using Long

Time Series of Reforecasts and Precipitation Reanalyses. Part II: Results

DIANA R. STOVERN,a,b THOMAS M. HAMILL,b,c AND LESLEY L. SMITHa,b

a Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
b NOAA/Physical Sciences Laboratory, Boulder, Colorado

c IBM/Weather Company, Andover, Massachusetts

(Manuscript received 8 November 2022, in final form 1 March 2023, accepted 21 March 2023)

ABSTRACT: This second part of the series presents results from verifying a precipitation forecast calibration method dis-
cussed in the first part, based on quantile mapping (QM), weighting of sorted members, and dressing of the ensemble.
NOAA’s Global Ensemble Forecast System, version 12 (GEFSv12), reforecasts were used in this study. The method was
validated with preoperational GEFSv12 forecasts from December 2017 to November 2019. The method is proposed as an
enhancement for GEFSv12 precipitation postprocessing in NOAA’s National Blend of Models. The first part described
adaptations to the methodology to leverage the ;20-yr GEFSv12 reforecast data. As shown here in this part, when com-
pared with probabilistic quantitative precipitation forecasts from the raw ensemble, the adapted method produced down-
scaled, high-resolution forecasts that were significantly more reliable and skillful than raw ensemble-derived probabilities,
especially at shorter lead times (i.e.,,5 days) and for forecasts of events from light precipitation to.10 mm (6 h)21. Cool-
season events in the western United States were especially improved when the QM algorithm was applied, providing a sta-
tistical downscaling with realistic smaller-scale detail related to terrain features. The method provided less value added for
forecasts of longer lead times and for the heaviest precipitation.

KEYWORDS: Downscaling; Statistical techniques; Forecast verification/skill; Probabilistic Quantitative Precipitation
Forecasting (PQPF); Ensembles; Postprocessing

1. Introduction

Skillful and reliable probabilistic quantitative precipitation
forecasts (PQPF) are necessary for a variety of applications. Fore-
casters at the National Oceanic Atmospheric Administration
(NOAA) use PQPFs to provide impact-based decision support
services to water resource managers and emergency person-
nel, especially for characterizing the uncertainty leading up
to a possible extreme-precipitation event (Dahl and Xue
2016). The ensemble precipitation data used to generate
PQPFs are used as forcing for hydrologic models, which
also needs to be skillful to reduce uncertainty and improve
the accuracy of streamflow forecasts (Brown et al. 2012).
NOAA’s Hydrological Ensemble Forecasting System (HEFS;
Demargne et al. 2014) and National Blend of Models (NBM;
Hamill et al. 2017; Hamill and Scheuerer 2018; Craven et al.
2020) are operational applications that currently incorporate
ensemble data into their production for producing short- and
medium-term (i.e., lead times from ,1 to 15 days) hydrologic
and atmospheric forecasts. One of the primary ensemble
systems used to generate the forecasts comes from the U.S. Na-
tional Weather Service’s Global Ensemble Forecasting System
(GEFS).

The GEFS has gone under many improvements since it be-
came operational in 1992 (Toth and Kalnay 1993). One of the
major improvements with the most recent update to version
12 (GEFSv12) in September 2020 is the replacement of the
dynamical core from the legacy Global Spectral Model to the
Finite Volume Cubed-Sphere Dynamical Core (Zhou et al.
2022). GEFSv12 was also used to generate a 20-yr global re-
analysis dataset from 2000 to 2019 and a 30-yr reforecast data-
set from 1989 to 2019, which are described in detail in Hamill
et al. (2022) and Guan et al. (2022). The ensemble system was
also increased from 21 members to 31, and the horizontal grid
spacing is now ;26 km. A detailed description of the up-
grades and verification in comparison with the GEFS, version
11 (GEFSv11), is described in Zhou et al. (2022). The verifica-
tion performed with regard to 24-h accumulated precipitation
forecasts had shown that, with these improvements, probabil-
istic forecasts of 1, 5, 10, and 20 mm were both more reliable
and skillful in the GEFSv12 than in the GEFSv11.

Despite the improvements in the GEFSv12 precipitation
forecasts, there was still a tendency for the model to provide
unreliable forecast probabilities over the contiguous United
States (CONUS; Zhou et al. 2022 and results herein). Even
with the reduction in grid spacing, the model is still too coarse
to resolve fine-scale topographically forced precipitation vari-
ability, as has been the case in legacy versions of the
GEFS (Lewis et al. 2017). Further, global models like the
GEFSv12 that parameterize the effects of deep convection
also tend to struggle with heavy precipitation events (Herman
and Schumacher 2016). Although not explicitly in reference to
the GEFSv12, other precipitation biases may exist that are de-
pendent on model type, lead time, location, and time of day
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(Yuan et al. 2005; Hamill 2012; Zhu and Luo 2015). These
biases can, in turn, produce biased ensemble streamflow pre-
dictions when the raw ensemble forecasts are directly used as
precipitation forcing in hydrologic prediction systems. Thus, it
has become commonplace to postprocess the raw model fore-
casts to correct for systematic errors and make them more
suitable for operational use and chained applications like hy-
drologic prediction (Hamill and Whitaker 2006; Hamill et al.
2008, 2013, 2015; Vannitsem et al. 2018, 2021).

In Hamill et al. (2017, hereinafter referred to as H17), quan-
tile mapping (QM) was applied to ensemble model guidance
from the National Weather Service and Environment Canada,
with the intent to demonstrate algorithmic concepts that could
be used in the NBM. QM provides an amount-dependent bias
correction based on the differences between forecast and ana-
lyzed cumulative precipitation distribution functions (Voisin
et al. 2010; Hopson and Webster 2010; Maraun 2013). The
training dataset in H17 used the previous 60 days of coincident
forecasts and analyses along with “supplemental locations” to
populate the cumulative distribution functions (CDFs). Sup-
plemental locations were defined as nearby grid points that
had similar precipitation climatology and terrain features. H17
included applying the quantile mapping using forecast data
from a 3 3 3 stencil surrounding grid points to synthetically
enlarge the ensemble, decreasing sampling variability and
ameliorating overconfidence in the placement of precipitation
features. A simplified dressing of the ensemble was performed
by adding amount-dependent random noise to each member
to increase the spread of the ensemble, and Savitzky–Golay
smoothing (Savitzky and Golay 1964) was also applied to the
POP field.

Additional improvements to the QM technique described
in H17 were presented in Hamill and Scheuerer (2018, herein-
after HS18). One of revisions of the procedure included esti-
mates of the forecast and analyzed CDFs with a “fraction
zero” (the fraction of samples with zero precipitation) and a
Gamma distribution for positive amounts. Adjustments to
the quantile mapping were also made when forecasts were
exceptionally wet; see section 3b(2) of HS18 for more details.
Additional changes included the weighting of sorted members
based on “closest-member histogram” statistics and dressing
of sorted members with Gaussian-distributed kernels of prob-
ability density. With the adjustments made in HS18, additional
skill and forecast reliability was added beyond the results pre-
sented in H17, particularly at heavier precipitation thresholds.

Although the technique described in H17 and HS18 im-
proved reliability for 12-hourly probability of precipitation
(POP) and 6-hourly deterministic QPF relative to raw fore-
cast guidance, the use of a short training dataset (the past
60 days) in conjunction with the use of supplemental locations
reduced the amount of terrain-related precipitation detail in
the intermountain western United States and provided unreal-
istic quantile mappings during transitions between seasons
with predominantly stratiform and predominantly convective
precipitation. Given that the GEFSv12 implementation was
accompanied with a 20-yr reforecast dataset, Hamill et al.
(2023, hereinafter Part I) of this series described a revised
quantile-mapping approach, weighting, and dressing approach

to precipitation calibration that leveraged those reforecasts to
potentially improve precipitation calibration. The approach as
described in Part I abandons the use of supplemental locations,
uses multidecadal reforecast data to populate the CDFs, and
applies more careful estimations of the associated CDFs using
spline-fitting procedures and improved weighting and dressing.
The research hypothesis from Part I states that the quantile
mapping and rank-dependent weighting using the coarser-
resolution reforecast data and finer-resolution precipitation
analysis data will improve skill and reliability and provide a
statistical downscaling (Hamill et al. 2022); with more care-
fully defined CDFs based only on the data from the grid
point in question, the new method should be able to define
amount-dependent biases with terrain-related detail, pre-
suming the high-resolution analysis has subgrid-scale detail
relative to the coarser-resolution forecast. The more careful
estimation of closest-member histograms and dressing sta-
tistics may also provide an improvement over the previous-
generation algorithm. See Part I) for algorithmic details.

In this part, the characteristics of the GEFSv12 precipitation
forecasts with the revised reforecast-based quantile mapping,
weighting, and dressing procedure will be evaluated relative to
the raw ensemble guidance. The 6-hourly precipitation totals
are used, and training and validation data consists of high-
resolution precipitation analyses synthesized from the Clima-
tology Calibrated Precipitation Analysis (CCPA; Hou et al.
2014) over the contiguous United States and the Multi-Source
Weighted Ensemble Precipitation (MSWEP; Beck et al. 2019)
elsewhere. The relative impact of each step of the calibration
process will be evaluated, starting with the results from just
quantile mapping, then quantile mapping with closest-member
histogram weighting, and finally quantile mapping with the
weighting and dressing. The verification metrics used in this
study are introduced in section 2. The results comparing the
performance of the procedure using “retro” forecasts from
December 2017 to November 2019 are discussed in section 3.
Section 4 concludes with a summary and discussion, including
future work.

2. Data and evaluation methodology

The raw and postprocessed GEFSv12 precipitation fore-
casts were evaluated using the 0000 UTC cycle from the
GEFSv12 preproduction retrospective (“retro”) forecasts for
all days between 1 December 2017 and 30 November 2019.
These were more completely described in Part I. The high-
resolution (;3 km; 6-hourly) precipitation analyses used for
verification were also described in that article. The reforecast
ensemble dataset was additionally enlarged using a 5 3 5
stencil of forecast values from the surrounding grid points.
As described in H17 and HS18, the purpose of this was to re-
duce sampling variability at each grid point, deal with system-
atic position errors, and create smoother spatial maps of
ensemble probabilities. An example in H17 (H17, their
Figs. 7a,b) shows the benefit of quantile mapping using the
stencil versus without the stencil. Part I contains more in-
formation on how the 5 3 5 stencil was applied in this
experiment.
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Because of the volume of data that was generated with the
quantile-mapping routine, when generating objective statistics
of the results, we chose to evaluate data on a thinned grid, every
10th gridpoint of the original ;3-km National Digital Forecast
Database (NDFD) output grid. Verification was performed on
the set of thinned grids within the CONUS and selected points
in the Columbia River basin in Canada and tributaries of the
Rio Grande in Mexico. However, for case studies, the full fields
including surrounding regions were shown when demonstrating
differences between raw and postprocessed guidance.

Forecast lead times from16 to1240 h in 6-hourly accumula-
tion periods were evaluated, but particular attention was paid
to the 124-h (11 day), 172-h (13 day), 1120-h (15 day), and
1240-h (110 day) lead times. PQPF for 6-hourly amounts ex-
ceeding 0.254 mm (POPs) and 1, 5, 10, and 25 mm were ana-
lyzed, but the results for the POPs, P[obs . 5 mm (6 h)21],
P[obs . 10 mm (6 h)21], and P[obs . 25 mm (6 h)21] thresh-
olds will be the focus. When characterizing these thresholds,
POPs will sometimes be referred to as light precipitation,
P[obs . 5 mm (6 h)21] and P(obs . 10 mm (6 h)21] are consid-
ered moderate precipitation, and P[obs. 25 mm (6 h)21] is heavy
precipitation. Results for the “warm season” (April–September)
and “cool season” (October–March) will be provided. Results tab-
ulated for the western United States were calculated using all
points inside the CONUS that were in the western 3/7ths of the
domain, or approximately west of 1038W longitude. Similarly, the
region considered the eastern United States covers all grid points
including and east of roughly 1038W longitude.

Similar evaluation metrics as those used in H17 and HS18
will be applied here. Brier skill scores (BSS) and reliability di-
agrams (Wilks 2011) will be the primary methods for evaluat-
ing the probabilistic forecasts. The BSS were calculated
relative to the climatology from the CCPA/MSWEP gridded
data. The climatology was determined separately for each
grid point, for each 6-hourly accumulation period during the
day, and for each month of the year. Relative to this climatol-
ogy, a perfect probabilistic forecast will have a BSS value of
1.0, whereas a forecast with a BSS value of 0.0 indicates that
the forecast has the same skill as the climatology.

Reliability diagrams were also used to assess the consis-
tency between the forecast probabilities and the observed fre-
quency (Wilks 2011; H17). Each reliability diagram contains
an inset histogram that displays the frequency for which fore-
casts of various probabilities were issued. A reliable forecast
will display a 1–1 relationship between the issued forecast
probability and the observed relative frequency. A sharp fore-
cast will have probabilities that deviate from climatology, with
more forecast probabilities closer to 0 or 1; a desired skillful
forecast exhibits both sharpness and reliability.

Confidence intervals for the 5th and 95th percentiles of the
resampled distribution are displayed on the reliability diagrams
to indicate the uncertainty in the reliability calculations due to
sample size. For reliability, the bootstrap procedure generated
100 resamplings of the underlying contingency tables needed to
produce the reliability, with replacement. These resampled
overall contingency tables were computed from a sum of the
random daily contingency tables, the dates of which were se-
lected randomly, with replacement. Those daily contingency

tables were populated with data from grid points across the do-
main. From the 100 contingency tables, 100 reliability curves
were estimated, and the 5th and 95th percentiles of the ana-
lyzed relative frequency were reported. When fewer than 100
samples were available for a given probability bin in the contin-
gency table, no confidence intervals were plotted.

Several case studies will be shown that qualitatively demon-
strate how the postprocessing alters the spatial structure of
probabilistic rainfall for different precipitation regimes across
the CONUS. The examples show the strengths and weaknesses
of the algorithm when the QM is applied, providing insight to
how the postprocessed guidance can be used by forecasters in
regard to heavy-rainfall prediction.

3. Results

a. Reliability

1) POPS

The raw GEFSv12 showed a lack of reliability for POPs at
all lead times out to 1240 h for both cool- and warm-season
events. Shown in Fig. 1 are the reliability diagrams for the
124-, 1120-, and 1240-h lead times. Raw forecasts were gen-
erally overconfident, with forecast probabilities above ;20%
being too high (precipitation observed less frequently than
predicted) and probabilities below ;20% being correspond-
ingly too low. The overall unreliability for both seasons may
have several causes, including insufficient spread in the en-
semble from the choice of initial conditions and suboptimal
physical parameterizations and “stochastifications” thereof, as
well as the different grids of the raw GEFSv12 (;25 km) ver-
sus the verification (3 km). There are inevitable errors in
precipitation analyses as well (Gehne et al. 2016), and the
forecasts have not been dressed with possible precipitation
errors (Hamill 2001, Fig. 6) as may be a desirable practice;
the magnitude of precipitation errors as a function of pre-
cipitation amount and season have not been estimated, to
our knowledge. When comparing the evaluation of raw
GEFSv12 reliability here relative to previous evaluations
against coarser-resolution analyses as in HS18, however, the
GEFSv12 appeared to be more reliable than the previous
model version. This suggests that there was less error to be
ameliorated through statistical postprocessing with the newer
GEFSv12 version in comparison with older versions, and the
skill improvement from postprocessing may be lessened.

Applying quantile mapping substantially improved the re-
liability for all lead times and seasons, correcting the ten-
dency for the raw GEFS to overestimate mid- to higher-end
probabilities. The tendency for the raw GEFS to underesti-
mate lower-end probabilities was further exacerbated with
the quantile mapping; however, this was remediated when
the weighting and dressing were applied. The largest benefit
of the dressing and weighting is to add further refinement to
the quantile mapping, particularly at shorter lead times
since not as much improvement is to be had at later lead
times after the QM is applied (Figs. 1b,c,e,f)

A regional analysis indicated that the raw GEFSv12 had
more of a tendency in the eastern United States to
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overestimate mid- to high-values POPs in comparison with
the western United States, especially at early lead times.
However, the bias toward underestimating lower-end POPs
was coming more from the western United States, especially
in the warm season (see Fig. S1 in the online supplemental
material). The quantile mapping, dressing and weighting cor-
rected for the regional biases in both the warm and cool
seasons.

2) P[OBS > 10 MM (6 H)−1]

Like the POPS, the raw GEFSv12 over-forecasted proba-
bilities of 6-h precipitation greater than 10 mm across the
CONUS for both warm- and cool-season precipitation events
(Fig. 2). Quantile mapping, dressing, and weighting corrected
the overconfidence in the model out to a 172-h lead time,
more so in the cool season (Figs. 2a–c) versus the warm sea-
son (Figs. 2d–f). Interestingly, quantile mapping by itself in
the cool season during the first 148 h produced such reliable
forecasts that there was not much room for improvement
from the dressing and weighting. Forecast probabilities in the
warm season were still slightly overestimated after the post-
processing steps were applied.

A regional analysis for this threshold (see Fig. S2 in the online
supplemental material) showed that the unreliability in both the
warm and cool seasons were coming more from the western
United States than the eastern United States. For the warm sea-
son at the148-h lead time specifically, the climatologically drier
western United States had fewer 6-h rainfall totals greater than
10 mm (Fig. S2c). When heavier rain did occur, it was likely
more primarily driven by smaller-scale convective processes that
intermediate-resolution models like the GEFSv12 tended to be
unable to resolve and correctly propagate (Herman and Schu-
macher 2016). Quantile mapping, weighting, and dressing still
improved reliability over the raw GEFSv12 in the west, thus cor-
recting gross biases during warm-season events but likely could
not address the limitations of model resolution and the use of
parameterized deep convection. The reliability was much better
during cool-season events (Fig. S2a) in the western United
States but was greatest overall for cool-season events in the east-
ern United States (Fig. S2b).

3) P[OBS > 25 MM (6 H)−1]

For heavy precipitation thresholds {i.e., P[obs . 25 mm
(6 h)21]}, reliability from the raw GEFSv12 was better in the

FIG. 1. Reliability diagrams (left axis label) and logarithmic observed relative frequency (right axis label) for probability of exceeding
nonzero precipitation (POP) in 6-h accumulation periods for the (a)–(c) cool-season and (d)–(f) warm-season results ending at the (left)
124-, (center)1120-, and (right)1240-h lead times. BSSs are noted in the legend. Error bars represent the 5th and 95th percentiles from
a 100-sample bootstrap distribution generated by sampling case days with replacement. Each panel shows the raw GEFS forecast (red
curve), quantile-mapped forecast (blue curve), quantile-mapped forecast after adding the closest-member histogram weighting (green
curve), and quantile-mapped forecasts after adding the weighting and dressing (orange curve).
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cool season than in the warm season. During the convective
warm season, the analyses are not very accurate as there
will be substantial subgrid variability and hence representa-
tivity errors affecting both the forecasts and the verification.
Reliability did not improve for either warm or cool-season
events when the quantile mapping, dressing, and weighting
were applied (Fig. S3 in the online supplemental material).
This was the case for all lead times, regions, and seasons
that showed a systematic bias toward overestimating fore-
cast probabilities. This may have been due to a limitation on
how finely the closest-member histograms were binned for
heavier/extreme amounts. In results (not shown), a simplified
representation of closest-member histograms was generated
by fitting beta distributions to the sorted closest-member
ranks, using the mean and variance of these ranks and the
method of moments estimator (Wilks 2011, his section 4.4.4);
these results showed that the shape of the closest-member his-
togram continues to change as mean precipitation amount in-
creases. This indicates that the forecasts may be unreliable at
.25 mm (6 h)21 due in large part to suboptimal weighting.

b. Brier skill scores

Figures 3–5 show the Brier skill score of the GEFSv12 6-h
accumulated probabilistic precipitation forecasts both before
and after each step of the postprocessing algorithm was ap-
plied, separated by region (i.e., eastern United States and

western United States), and season (i.e., warm and cool). Re-
sults were plotted every 12 h for lead times out to 1240 h.
Starting with POPs, the quantile mapping added substantial
skill over the raw GEFSv12 for all seasons and regions (Fig. 3).
The closest-member histogram weighting and dressing added
only slight skill to the quantile mapping, with the largest benefit
for cool-season events in the eastern United States (Fig. 3b).
This suggests that the primary benefit from the additional steps
of weighting and dressing was to improve reliability, but with a
somewhat corresponding decrease in resolution (see Brier score
decomposition in Wilks 2011, section 8.4.3). Note that the post-
processed GEFSv12 had higher forecast skill during the cool
season than in the warm season, especially in the eastern
United States prior to the 1120-h lead time. This may be be-
cause winter precipitation tended to be larger in scale and the
model was better able to resolve it. However, postprocessing
added the greatest improvement to the raw GEFSv12 during
the eastern U.S. warm season (Fig. 3d). For example, at the
124-h lead time, the raw BSS was;0.1 and increased to ;0.37
after the weighting and dressing was applied. In comparison,
for the eastern U.S. cool season, the skill at 124 h increased
from 0.4 to 0.54. With increasing lead time, the amount of im-
provement in BSS that the quantile mapping added to the raw
GEFSv12 generally decreased for both seasons and regions;
likely this was because the spread deficiency and bias are partic-
ularly large at the shortest lead times, affected by model spinup.

FIG. 2. As in Fig. 1, but for the probability of 6-h rainfall exceeding 10 mm for (a)–(c) cool-season and (d)–(f) warm-season events at lead
times of (left)124, (center)148, and (right)172 h.
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Although the skill in the eastern U.S. cool season started out
highest of the four categories, the skill dropped off so quickly
that by 1201 h, the skill in the eastern U.S. cool season was
lower than both the western U.S. cool and warm seasons. By
1240 h, the skill in the eastern U.S. cool season was the lowest
of the four categories.

We note that forecast skill is typically a function of spatial
and temporal averaging, with more skill when averaging over
larger areas and longer periods of time (e.g., Islam et al. 1993;
Hamill 2014). While the skills shown here may appear small,
especially at short leads, the short 6-h time window and verifi-
cation on the ;3-km NDFD grid should be considered when
interpreting results. Verification is performed on this fine grid
and with this accumulation period, as this reflects the eventual
operational product’s grid.

Another interesting characteristic in the POPs was that the
BSS of the raw GEFSv12 displayed a diurnal “sawtooth” pat-
tern, particularly in the western U.S. warm season (Fig. 3c)
and eastern U.S. cool season (Fig. 3b). In the western U.S.
warm season, the skill tended to be lower between 0600 and
1200 UTC (overnight hours) and higher between 1800 and
0000 UTC (afternoon hours). In the western U.S. warm sea-
son, particularly during the North American monsoon, occur-
rences of precipitation are much higher in the afternoon
hours than overnight (Gochis et al. 2003). The smaller sample
size of precipitation during the overnight hours likely affects
the scores to produce the diurnal variation seen in Fig. 3c.

In contrast, in the eastern U.S. cool season, skill was
lower between 1800 and 0000 UTC (afternoon hours) and
higher between 0600 and 1200 UTC (overnight hours). This
diurnal pattern was generally dampened when the postpro-
cessing algorithm was applied.

The forecast BSSs for P[obs . 10 mm (6 h)21] are shown in
Fig. 4. Similar to the POPs, the raw and quantile-mapped GEFS
weremore skillful at early lead times in the easternU.S. cool sea-
son (Fig. 4b), but the greatest improvement from applying the
quantile mapping occurred in the western United States during
both the cool and warm seasons (Figs. 4a,c). Note here that ap-
plying the weighting and dressing did not addmuch skill over the
improvementsmade from the quantilemapping alone; while reli-
ability was improved (previous figures), again, apparently the
forecast resolution was degraded by nearly the same amount.
Forecast skill in the cool season dropped to BSS values less than
0.1 after 1144 h, even when the quantile mapping was applied
(Figs. 4a,b). In the warm season, there was generally no skill in
the raw GEFSv12 in the western United States, but some skill
was added back into the forecast at early lead times when quan-
tile mapping was applied (Fig. 4c). However, skill generally re-
mained low overall, especially after 1168 h when the BSS was
near zero. In the eastern U.S. warm season, skill in the raw
GEFS started out much higher relative to the western U.S.
warm season, but improvements from quantile mapping were
not as great and fell to near zero after the 1192-h lead time

FIG. 3. Brier skill scores for POPs during the (a),(b) cool and (c),(d) warm seasons in the (left) western and (right)
eastern United States.
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(Fig. 4d). Note that, for P[obs . 10 mm (6 h)21], the diurnal
variation of skill was not as pronounced as for the POPs.

For the heavy-rain threshold, P[obs . 25 mm (6 h)21], the
raw GEFSv12 displayed marginal skill in the cool season up to
a 172-h lead time (Figs. 5a,b) but displayed little to no skill in
the warm season (Figs. 5c,d). Quantile mapping improved the
skill in the western United States more than the eastern
United States, but weighting and dressing did not provide
much benefit over the QM alone. At this threshold, the largest
impact that the quantile mapping algorithm had was on fore-
casts in the western United States, especially during the cool
season at short lead times (Fig. 5a). Although the quantile-
mapped GEFSv12 was more skillful than the raw GEFSv12
after172 h, it was only marginally better, since BSS values fell
to about less than 0.1 thereafter. Furthermore, like the lower-
end precipitation thresholds, there did seem to be a diurnal
pattern associated with the skill of the quantile-mapped fore-
cast (Figs. 5a–c). In particular, the quantile-mapped forecast
during the western U.S. cool season was more skillful in the
1800–0000 UTC time frame (afternoon) and less skillful in the
0600–1200 UTC time frame (overnight; Fig. 5a).

c. Case studies

1) WARM-SEASON EVENTS

The previous results demonstrated that quantile mapping
of the GEFSv12 POPs significantly improved reliability and

skill out to a 1240-h lead time for warm-season events over
the CONUS domain. After postprocessing, skill was highest
with the most improvement shown at early lead times (e.g.,
Figs. 3c,d). The reliability diagrams demonstrated that an ad-
vantage of the quantile mapping routine was that it corrected
the tendency that the raw GEFSv12 had to overestimate mid-
to high-end probabilities across the entire United States. It
also corrected the tendency that it had to underestimate low-
end probabilities, which occurred primarily in the western
United States at early lead times. Several cases from July 2019
will be shown that spatially demonstrate how the postprocess-
ing routine alters the raw forecast. The cases should provide
context to the objective verification previously shown and give
a sense of some of the limitations to the routine.

The 6 h ending at 0000 UTC 16 July 2019 was an active
precipitation period in both the eastern and western United
States. In the eastern United States, Tropical Storm Barry had
weakened into a tropical depression (TD), bringing bands of
moderate to heavy precipitation to the Lower Mississippi Val-
ley and Ohio River Valley (Fig. 6a). The upper Midwest from
Minnesota through Wisconsin and Michigan received some of
the heaviest precipitation during this period, with some areas
of convection exceeding 50 mm (6 h)21. In the western United
States, a monsoonal moisture plume had extended as far north
as western Montana. This brought elevated convective precipi-
tation through almost the entire north–south extent of the

FIG. 4. Brier skill scores for P[obs. 10 mm (6 h)21] for the (a),(b) cool and (c),(d) warm seasons in the (left) western
and (right) eastern United States.
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United States Rockies, spanning as far south as southeastern
Arizona.

There were several areas worth noting from the raw
GEFSv12 POPs that were either underestimated or overesti-
mated at the 124-h lead time (Fig. 6b). The blue arrows in
the images point to areas in the western United States where
at least 0.254 mm (6 h)21 precipitation was analyzed by the
CCPA/MSWEP (contoured, stippled) but where the POPs
were zero. Central Colorado (arrow 1) and southern Montana
and western Wyoming (arrow 2) were some of these areas.
The blue ovals highlight the approximate areas in the eastern
United States where there was no observed precipitation but
where the raw GEFSv12 POPs were over 50%. In particular,
the POPs were overestimated along the western and northern
edges of the verifying precipitation for TD Barry (ovals 1
and 2). Rainfall on the periphery of the system in the upper
Midwest was also overestimated, especially along the south-
western and northwestern edges located over Minnesota
(ovals 3 and 4).

When the quantile mapping was applied, higher-end proba-
bilities were reduced across the entire United States (Fig. 6c).
In the eastern United States, low- and midrange probabilities
were reduced along the edges of the precipitation systems
that were over-forecasted by the raw GEFSv12 (e.g., ovals in
Fig. 6b). The POPs on the northern periphery of TD Barry
where the raw GEFSv12 had values over 50% were reduced
to values between 0% and 30% after quantile mapping.

Probabilities also substantially reduced along the system go-
ing through Minnesota, Wisconsin, and Michigan, constrain-
ing the higher-end POPs to areas that actually verified as
having rainfall. In contrast, the low- and midrange probabili-
ties in the western United States had increased in spatial cov-
erage, effectively capturing more of the analyzed footprint of
precipitation over Colorado and Wyoming that the raw
GEFSv12 had missed. With each additional step of the post-
processing, the low- and midrange probabilities slightly in-
creased, which corrected the tendency that the raw and QM
GEFSv12 had to under forecast the low-end probabilities in
the Rocky mountain region of the western United States
(Fig. 6d).

The POPs at the124-h lead time for precipitation analyzed
between 1800 and 0000 UTC 18 July 2019 (Fig. 7a) displayed
similar results to the previous case. Notably, quantile mapping
dampened higher-end probabilities across most of the United
States and increased the spatial coverage of lower-end prob-
abilities in the west and decreased coverage of low- and
midrange probabilities in the east (Figs. 7b,c). Adding the
additional steps of weighting and dressing increased low-
and midrange probabilities across the entire United States
(Fig. 7d). One thing notable about this particular period is
that there was a mesoscale convective system (MCS) that
produced 75 mm (6 h)21 of rainfall over eastern Missouri
and Iowa that was inadequately captured by both the raw
and postprocessed GEFS (arrow 1). The POPs from the raw

FIG. 5. As in Fig. 4, but for P[obs. 25 mm (6 h)21].
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GEFS had shown probabilities around 80% near the area
where heavy rainfall occurred on the western side of the
MCS, but postprocessing reduced the probabilities to
around 10% (Figs. 7b–d); this was likely due to the applica-
tion of quantile mapping using the 5 3 5 stencil that incor-
porated surrounding dry forecast points.

2) COOL-SEASON EVENTS

In both the raw and postprocessed GEFSv12, skill and
reliability were generally better for cool-season events
than for warm-season events, especially for POPs in the
first 120 h of the forecast. For cool-season precipitation,
the regional analysis of the BSS indicated that although
skill was generally higher for eastern U.S. events, quantile
mapping added the greatest improvement to the western
United States (Fig. 3a). To demonstrate what quantile
mapping does spatially for cool-season events, the raw and
postprocessed POPs will be compared for the 6-h observed
precipitation ending at 0000 UTC 2 March 2018 (Fig. 8a).
During this period, there was a strong nor’easter impacting
the eastern United States. The heaviest precipitation from
this system brought values exceeding 25 mm (6 h)21 to an
area centered near the border of Ohio and Pennsylvania,

with another weaker precipitation maxima spanning later-
ally through North Carolina. In the western United States,
a strong low pressure system brought heavy precipitation
to areas of high terrain, with 6-h amounts exceeding 25 mm
in the Sierra Nevada range and along the coastal ranges of
California and Oregon.

The 124-h lead time from the raw and quantile-mapped
GEFS had POPs that showed some similar characteristics to
the warm-season case analyses (Figs. 8b,c). Specifically, quan-
tile mapping reduced higher-end probabilities across the entire
United States, dampened lower-end probabilities in the east,
and expanded the area of lower-end probabilities in the west.
Note that in the western United States, the quantile mapping
reduced the spatial extent of high probabilities to areas of
higher terrain in California’s coastal mountain ranges, the
Sierra Nevada, the Cascade Range through Oregon, and the
Rocky Mountains from Utah up through Idaho and northern
Washington (Fig. 9). Probabilities were also reduced in areas
of lower elevation through the northwestern United States, ef-
fectively downscaling to delineate some of the dominant ter-
rain features. The improved representation of the POPS over
the high terrain can be seen out to at least the 1120-h lead
time (Figs. 9d,f).

FIG. 6. (a) Analyzed precipitation from the CCPA/MSWEP for the 6-h period ending at 0000 UTC 16 Jul 2019.
The GEFS probability of precipitation exceeding 0.254 mm in 6 h for the 124-h lead time is shown for the corre-
sponding (b) raw; (c) quantile-mapped; and (d) quantile-mapped, weighted, and dressed forecasts (initialized at 1800–
0000 UTC 15 Jul 2019). The 0.254-mm contour (black line) from the CCPA/MSWEP is overlaid (stippled, with black
outline) on (b)–(d) for comparison.
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Another case study from the 6-h period ending at 0000 UTC
3 February 2019 demonstrates some of the strengths that the
quantile mapping routine had on cool-season events in the west-
ern United States. During this period, an atmospheric river
made landfall and brought heavy precipitation to southern
California and the Sierra Nevada range. There was an area
that received over 75 mm (6 h)21 over the San Gabriel moun-
tain range. Figure 10 shows P[obs . 5 mm (6 h)21] for the
124- (Figs. 10a,b), 172- (Figs. 10d,e), and 1120-h (Figs. 10g,h)
lead times along with a black contour that encompasses the
observed precipitation equal to or exceeding 5 mm. The an-
alyzed precipitation from the CCPA/MSWEP (Figs. 10c,f,i)
is also shown for comparison. The quantile mapping im-
proved the spatial representation of the higher-end probabili-
ties for this threshold over the terrain in southern California.
In some areas, quantile mapping caused the lower-end proba-
bilities to increase in spatial coverage. This is especially notice-
able at all shown lead times over the northern California
coastal mountain ranges and in northwestern Arizona at the
172- and1120-h lead times.

Also, recall that although reliability did not improve much
for P[obs . 25 mm (6 h)21], the BSS significantly increased
for western United States, cool-season events with quantile
mapping (Fig. 5a). Figure 11 shows that, relative to the raw
GEFS at the 124-, 172-, and 1120-h lead times, the quantile
mapped forecast for P[obs . 25 mm (6 h)21] was spatially
more accurate, with enhanced probabilities over the San

Gabriel mountain range. The quantile-mapped forecast indi-
cated a chance for heavy precipitation in the area that re-
ceived 75 mm of 6-h rainfall, even out to a 1120-h lead time.
This result suggests that the P[obs. 25 mm (6 h)21] from the
quantile-mapped GEFS could be a useful metric for deter-
mining locations of heavy rainfall during cool-season events
in the western United States.

4. Summary and discussion

In this second part of this series, results were presented
demonstrating the effect that a new quantile mapping rou-
tine proposed for the NBM had when applied to retrospec-
tive forecasts from the 0000 UTC cycle of the GEFSv12
between December 2017 and November 2019. The pro-
posed new method leveraged multidecadal reforecasts and
would supersede the current NBM method for GEFSv12
data.

The existing method generates forecast CDFs used in the
quantile mapping from the previous 60 days of forecast and
analyzed data. Small sample sizes were addressed by supple-
menting training data with forecasts and analyses from other
locations with similar climatologies and terrain features
(“supplemental locations”). This previous method had subop-
timal skill and reliability during transition seasons (e.g., going
from climatologically wet summer to dry autumn) and some-
times misrepresented the intensity and spatial distribution of

FIG. 7. As in Fig. 6, but (a) for the 6-h period ending at 0000 UTC 18 Jul 2019 and (b)–(d) initialized at 0000 UTC 17 Jul 2019.
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precipitation events in high terrain of the western United
States.

Part I describes the proposed new method, which utilized
nearly two decades of reforecast and analyzed precipitation
data and an advanced spline-fitting procedure to generate the
forecast CDFs. The forecasts were also reweighted using
closest-member histograms and subsequently dressed with a
Gaussian probability distribution whose standard deviation de-
pended on the forecast amount. The changes to quantile map-
ping and also to details of the closest-member reweighting and
dressing resulted in downscaled, high-resolution PQPF fore-
casts that were shown to be significantly more reliable and skill-
ful than the raw forecasts, especially at shorter lead times (i.e.,
,5 days) and for light to moderate precipitation events. The al-
gorithm is also computationally fast, as the spline-fitting rela-
tionships and the weighting and dressing statistics have been
precalculated for all lead times. With modest effort, the proc-
essing of GEFSv12 precipitation data in the NBM can be ad-
justed to use the new method. Because other models in the
NBM do not have their own daily reforecasts, they would con-
tinue to rely on the 60 days of previous forecasts and the use of
supplemental locations.

Reliability diagrams showed significant improvement in fore-
cast reliability for all seasons and regions for all but the heaviest
rainfall amounts. Forecasts of 6-h POPs were substantially im-
proved across the CONUS out to 1240-h lead time after the
quantile mapping, weighting, and dressing were applied. For

probabilities greater than 20%, the raw GEFSv12 overesti-
mated POPs, but each step of the algorithm sequentially im-
proved the guidance to produce high reliability for both warm
and cool-season events. For values generally less than 20%, the
raw GEFSv12 underestimated POPs out to at least a 172-h
lead time that further degraded with quantile mapping. How-
ever, this was corrected when the dressing and weighting was
applied. The raw GEFS also had a tendency to overesti-
mate mid- to upper-range forecast values for P[obs .

10 mm (6 h)21] that was corrected with the quantile map-
ping, dressing, and weighting, though the improvement in re-
liability was most notable during the first 72 h of the forecast.

Brier skill scores also showed significant improvement for
all seasons and regions, particularly for lead times less than
1120 h and for light- to moderate-precipitation events. After
postprocessing, the absolute skill of the POPs was highest for
cool-season events in the eastern United States. However, the
reforecast-based procedure produced its greatest skill im-
provement relative to the raw guidance with warm-season
events in both the eastern and western United States. For
P[obs . 10 mm (6 h)21], skill was again highest for cool-
season events in the eastern United States, but the greatest
improvement from postprocessing occurred for cool-season
events in the western United States. In addition, although
reliability did not show substantial improvement for P[obs
. 25 mm (6 h)21], the skill was notably improved for west-
ern U.S. cool-season events out to at least a 172-h lead

FIG. 8. As in Fig. 6, but (a) for the 6-h period ending at 0000UTC 2Mar 2018 and (b)–(d) initialized at 0000UTC 1Mar 2018.
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time. The lack of improvement in reliability of the heaviest
forecasts may be due to the combining closest-member histo-
grams for both moderate and heavy precipitation events. This
might be addressed in future work with other methods for fit-
ting closest-member histograms for very heavy events, a chal-
lenging problem given relatively few training samples.

The case studies presented visually demonstrated the
strengths of the routine and provided insight to results from

the reliability diagrams and Brier skill scores. For both warm
and cool-season events, quantile mapping reduced higher-end
POP values, generally dampening probability maxima for all
system types (e.g., MCSs, cool-season synoptically driven
events, tropical cyclones) across the United States. Low- and
mid-end probabilities in the eastern United States were also re-
duced, but this generally helped to constrain the precipitation
systems to areas that actually verified with 0.254 mm (6 h)21 of
precipitation. In the western United States, the quantile map-
ping, weighting, and dressing effectively downscaled the proba-
bilities to give a better representation of precipitation over the
high terrain. The tendency for the raw and quantile-mapped
GEFS to under-forecast low-end POPs in the western United
States was visually demonstrated for both a warm- and cool-
season event. When the dressing and weighting were applied,
the lower-end probabilities expanded spatially to capture more
of the analyzed precipitation from the CCPA. For moderate
precipitation amounts {i.e., P[obs . 5 mm (6 h)21]}, although
the reliability diagrams demonstrated that quantile mapping
corrected the tendency that the raw GEFS had to over-forecast
probabilities by dampening the values, there were some in-
stances where quantile mapping enhanced the probabilities,
particularly in areas of the highest terrain in the western
United States This often occurred for strong atmospheric
river events during the cool-season in the western United
States along the coastal mountain ranges and the Sierra
Nevada range in California. Probabilities for heavy precipi-
tation {i.e., P[obs . 25 mm (6 h)21]} were generally found to
be unreliable both before and after postprocessing. However,
with the atmospheric river events analyzed, the downscaling in
the western United States enhanced probabilities in higher-
terrain to effectively improve the spatial representation of pre-
cipitation and provide a better signal to where the heaviest
amounts actually occurred, even at a 5-day lead time.

There are some caveats and limitations that exist with the
updated algorithm. Besides the few scenarios where the post-
processed GEFS correctly enhanced probabilities for heavy
rainfall (i.e., western United States, cool season, and atmo-
spheric river events), reliability and skill for heavy rainfall
{i.e., P[obs . 25 mm (6 h)21]} generally did not improve
when the quantile mapping, dressing, and weighting were ap-
plied. In addition to possible changes to closest-member histo-
grams, it is also possible that probabilistic forecasts of heavy
rainfall might be produced with more skill using more sophis-
ticated machine-learning algorithms, such as neural networks
discussed in Ghazvinian et al. (2022) or random-forest deci-
sion tree learning as was used in Herman and Schumacher
(2018). Furthermore, bias correction of the location and tim-
ing of precipitation events are outside the capabilities of the
algorithm. These biases can still arise for landfalling TCs, tim-
ing, and initiation of MCSs, and convective events that occur
east of the Rocky Mountains in areas of flatter terrain. The
quantile mapping routine cannot provide a realistic statistical
downscaling of warm-season convective precipitation whose
location inside the 25-km GEFSv12 grid box is mostly ran-
dom. The authors also acknowledge that because of resource
limitations, a direct comparison was not made with respect to
the legacy NBMmethod that used 60 days of prior forecasts.

FIG. 9. Probabilities of 6-h rainfall exceeding 0.254 mm (POPs)
for the (left) raw and (right) quantile-mapped, weighted, and
dressed GEFSv12 at the (a),(b) 124-; (c),(d) 172-; and
(e),(f) 1120-h lead times. The verifying precipitation equal to or
exceeding 0.254 mm from the CCPA/MSWEP for the 6-h period
ending at 0000 UTC 2 Mar 2018 is outlined with a black contour
for reference.
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FIG. 10. Probabilities of 6-h accumulated rainfall exceeding 5 mm for the (left) raw and (center) quantile-mapped, weighted, and
dressed GEFSv12 at the (a),(b) 124-; (d),(e) 172-; and (g),(h) 1120-h lead times corresponding to the corresponding (c),(f),(i) verifying
6-h period ending at 0000 UTC 3 Feb 2019 from the CCPA/MSWEP. The area that verified with precipitation equal to or exceeding 5 mm
is outlined with a black contour for reference.
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FIG. 11. As in Fig. 10, but for 6-h accumulated rainfall exceeding 25 mm for GEFSv12 and for areas that verified with precipitation equal
to or exceeding 25 mm.
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A likely next step for this research will be to examine the
use of quantile-mapped ensemble members (without the 5 3 5
stencil) as precipitation forcing for hydrologic models such as
the Hydrologic Ensemble Forecast System (Demargne et al.
2014), or the National Water Model (Gochis et al. 2020). The
quality of the resulting streamflow forecasts will be evaluated
against streamflow forecasts using the raw GEFSv12. Collabo-
rative work with hydrologic partners from NWS River Forecast
Centers and the Office of Water Prediction is ongoing to see
how these forecasts can be used to produce skillful probabilistic
forecasts and reduce uncertainty in streamflow forecasts. Given
that the new QM procedure produces 31 ensemble members of
detailed, downscaled precipitation with improved reliability and
skill over the raw model, the authors hypothesize that ensemble
streamflow forecasts should be improved as well.

Through NOAA’s Earth System Research Laboratory/
Physical Sciences Laboratory, 6-h precipitation forecasts of the
quantile-mapped deterministic mean and exceedance probabili-
ties are generated and displayed on a public website, which is
updated daily using the 0000 UTC run from the GEFSv12 and
displayed out to a 1240-h lead time (https://www.psl.noaa.gov/
forecasts/GQM/).
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